
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 03 STOCKHOLM, AUGUST 19-21, 2003

AN INTEGRATED ARCHITECTURE FOR FUNCTIONAL PRODUCTS

Dr. Gunilla Sivard

Abstract
There is an increasing trend in industry of selling services in addition to physical products. In
functional sales, companies sell the service of delivering the function of the product as
opposed to selling the product itself. While there is a long tradition of structured development
and management of purely physical goods, there is a lack of such methods for services, and
for the mixture of service and goods - so called functional products.

This paper describes an effort of defining a formal model of services, contributing to the
efforts of structuring, visualizing and managing functional products in analogue with purely
physical products.

A modular architecture for services is presented, based on the paradigm of defining services
as discrete, decomposable activities. Sub activities, so called service modules, are described in
terms of the activity’s properties and interfaces to other service modules. Since the method is
based on principles for uncoupled design, it provides support for creating transparent and
flexible architectures with a minimum of built in dependencies between functions and their
physical implementation.

The service module aggregation and representation principles are described in relation to an
industrial distribution case.

Keywords: Service, functional product, model, module, interface, architecture.

1. Introduction

1.1 Rationale for representing service
In industry of today, the development of services, rather than of purely physical products,
constitutes a large part of a company’s expansion [1]. Companies deliver a mixture of
hardware, software and service, where services could be part of the final system, such as the
telephone line switching performed by operators in the early days of the telephone, or be the
activities of developing and maintaining the physical goods.

Product
Realization
Services

Installation and
Maintenance

Services

Operation
services

Realized
function

Goods

Operational
Goods

Needs

Figure 1 Services in relation to the goods, described in an IDEF0 model [8] (see section 3.1)

 2

Services pertaining to the planning and design of systems are traditionally part of the sales
activities and integrated with the price of the product. To a growing extent, though, these are
separated out as individually priced and defined consulting products in themselves. For
example, services related to a large system installation are in industry commonly divided into
activities related to the system value chain [1]:

Design
consulting

consultant, IC

job
specification

needs,
circumstances

system
specification

Install
consulting

consultant, IC

job
specification

HW, SW
components

installed
system

Manage
services

technician, tools,
instructions

job
specification

installed
system
state B

Figure 2 Services related to a system realization

Moreover, the trend is for many companies to turn to “Functional Sales” [2] as a more
beneficial way of meeting the required function of their customers, functional sales meaning
that the company instead of delivering a physical product, rather takes the responsibility of
delivering the functionality of the product, often with an addition of other services required to
meet the needs of the customer. This type of business thus means delivering a service, rather
than delivering a product, for example delivering the service of “drying material” rather than
selling an industrial fan. Apart from the changes to the organization and sales strategies of the
company, this requires means for an efficient management and reuse of service descriptions
and of the resources required to perform the services.

Design efforts will thus have to address the design of services that add value to and utilize
parts as well as of the physical parts themselves, in order to deliver a whole function. Various
means and standards for representing physical product information have been developed over
the years [3], but there is a lack of methods for efficient development and management of
services. Thus, there is a need for a method for structuring and describing services, as well as
for structuring the mixture of service and goods.

1.2 Approach
The goals of this research are to support the development and management of functional
products by: 1) defining how to structure services for efficient reuse and customization, and
2) defining how to model service information to support development and maintenance and
finally 3) defining the relation between services and goods in relation to the overall function,
in order to model a functional product.

For the structuring, a modular solution architecture is proposed. The approach is to apply
principles for functionally decoupled design [4] and modularization [5][6], to structure a
service in terms of independent, combinable service modules. The approach is based on the
hypothesis that a service is a discrete process that, in analogue with a physical product, can be
decomposed into a structure of components with defined functions and interfaces. Such
modules could be controlled, varied and combined in various ways to create a large set of
solution alternatives. A model of service is proposed, describing a service as a value adding
activity with function, interfaces and properties - properties that in turn are materialized by the
resources, which are used to perform the activity. A modular architecture is applied to an

 3

industrial service case study, based on existing principles for modular products and
information modeling of product families with variants [7].

1.3 Definitions and limitations
There are several ways of defining concepts related to the selling of functions. In this context,
the term functional product refers to solutions that contain a mixture of services and goods.
These solutions may be sold directly to a customer, or may be parts of realizing the function
in a functional sale. Since the focus of interest is on the representation of these mixed
solutions, issues of different business strategies concerning sales, ownership of the physical
hardware etc., are not considered.

2. Introduction to distribution example
An example will be used to clarify the representation of service, based on a case study at a
large Swedish distribution company. Currently, their distribution is based on a number of
integrated processes, each optimised for a specific type of delivery service. Although this is a
pure service example, it serves the purpose of describing how to represent a service, whether
it is a pure service or a service related to a physical product.

Figure 3 Integrated processes for each delivery

The company wants to split these processes into generic sub-activities that can be cost-
measured, varied and combined to create customized processes.

receiving

delivery of parcel
 from A to B

sorting and
bundling

deliver y

Figure 4 Main generic activities in distribution

3. Representing service

3.1 Defining service as an activity
A service realizes functions through an activity, as opposed to through an object. Assuming
that this activity can be made discrete, it can be decomposed into a set of sub-activities. An
activity is consumed in the same instance that it is created, which differs from physical
objects, which can be (mass-) produced in advance, and stored for later consumption. What
can be produced beforehand and stored for services, are the mechanisms for realizing it: tools,

Delivery process
of Type N Delivery process

of Type 3-
-N-1 Delivery process

of Type 2 2Delivery process
of Type 1

 4

material, competence, information and procedures that can be designed for efficient service
realization and reused again and again.

3.2 Modeling service in an activity model
Basically, an activity changes the state of matters, and in an IDEF0 model [8], an activity is
modeled as a transformation of inputs into outputs by use of a resource mechanism, and
controlled by a control-input. An input is always changed by the activity while the control is
not changed; it just controls the way the activity is performed.

activity

mechanism

control

outputsinputs

Figure 5 IDEF0 activity model

A service, being an activity, could be modelled in the same way. As with all models, a
purpose, viewpoint and detailing level should be defined [9]. Purpose of this service model is
to identify information related to the service, specifically identifying the reusable mechanism,
the service function, the interfaces to other service modules, and relations to the hardware of
the solution. Our viewpoint is the provider of the service, and the level of detail is low.
For this purpose, the mechanism constitutes people, machines, and tools, but also the supplier
specific documentation of how a service is to be performed, such as instructions, methods and
documented experience – the information resources. The in- and outputs describe the
resources that are transformed by the activity, and states of the object (goods, humans) being
“serviced”: the “service object”.

service

personel, tools,
information resources

customer specification

in state
of object

out state
of object

resources

Figure 6 Activity model of service

3.3 Representing service as a module
A component is “a constituent part (of a whole)” [10], often described by its attributes and,
when composite, by its structure of interconnected “subparts”.

A module is a component with defined interfaces, function and properties describing what it
achieves as opposed to how this is physically done. Main purpose of a modular architecture is
to facilitate the creation of several product variants based on alternative modules. Products
may vary “in space” as alternative variants in a product family, or “in time” as the new
generations of an existing product. This interchange ability assumes that modules are more or
less functionally independent, and that the physical interfaces are equivalent for different

 5

module alternatives. With the interface and properties remaining the same, the physical
realization within the module may change without affecting the overall properties of the
product. A service module is thus an activity that is defined in terms of its function, properties
and interfaces.

3.4 Functional decomposition
A crucial step towards achieving functional independence between modules is to design the
solution such that each functional requirement is independently realized in the solution. The
theory of Axiomatic Design [4] defines axioms and design rules for designing such un- or
decoupled solutions. The domain of design is described in terms of four interrelated domains:
the customer, functional, physical and process domains.

Requirements
(FRs)

Functional Domain Physical Domain Process Domain

Customer Needs
(CNs)

Customer Domain

Constraints

Processes
(PVs)

Solutions
(DPs)

Figure 7 The domains of design

Customer needs are translated to functional requirements (FR) and constraints in the
functional domain. FRs are realized by individual design parameters (DP) in the physical
domain, and the constraints define requirements that cannot be satisfied by a single DP, such
as e.g. cost or weight. The process of designing a solution is described as a zigzagging
between requirements and design-, or solution- parameters, where each FR is realized by one
DP, which in turn requires new FRs on the next level. This zigzagging between domains
result in a functional decomposition tree structure:

FR1.1 FR1.2

DP 1

FR 1

DP1. 2DP 1.1

Figure 8 Functional decomposition

When designing the processes that realize the design parameters, a corresponding zigzagging
between DPs and Process Variables (PVs) is performed.

It is important to understand that DP:s correspond to parameters of a solution, not to physical
components. Further, it is crucial to “Maintain the independence of Functional

 6

Requirements” (Axiom 1) by identifying and trying to minimize the dependence between one
design parameter and other functions than the one it is supposed to realize.

In a functional decomposition of services, the design parameters correspond to principles for
how the service activity is performed. The following structure visualizes a functional
decomposition of the distribution example; grey boxes represent functional requirements,
white boxes represent service design parameters.

size C sortingsize B sorting

fetching at
customers

customer
delivery

alternative solutions

Address Bundled
Distribution

get parcels

sort parcels
according to size

requires functions

deliver parcel
 from A to B

bundle

solution

zipcode and size
sorting

sort parcels
according to

zipcode

size A sorting

requires functions

alternative solutions

solution

deliver
parcel

transport
bundle unbundle

bundle for
transport

Figure 9 Functional decomposition of distribution service

3.5 Interfaces: Physical integration of service parameters
Solution parameters for the sub-functions of one main function may or may not be part of the
same physically integrated solution; the integration is a separate issue of aggregating
parameters into physical components.

One service module may realize only one function and materialize only one corresponding
design parameter, but in analogue with physical objects, several design parameters are often
integrated into one module.

For modules, it is paramount that interfaces can remain intact, and that the interface of all
variants of a service-module matches the interface of the connected service-module. Thus,
when integrating parameters that vary, all variants of how the service is performed should
have the same interfaces.

Figure 10 Connected service modules

Interfaces of a service module correspond to aspects of the activity that are relevant to the
surroundings, and the interface information can be described in terms of the mechanism, in-
and outputs of the activity model:

Service
Module 1

 Service
Module 2

Service
Module 3

 7

o Prerequisites to perform the activity
o In-states that the service can handle:

o Required attributes of the service object.
o Location, time, etc. when service can be active

o Information and resources needed to perform the action
o Physical interfaces of the resources performing the action
o Description of the result

o Description of out-state:
o Resulting attributes of the service object.
o Location, time, etc. when service is completed

o Information and resources resulting from performing the action

In the distribution case, one natural choice of service module aggregation is to create a “get
parcels” module class, with alternatives “fetch at customer” and “customer delivery”, both
with an interface “unsorted parcels at location A” to the next service module class “bundle”:

Figure 11 One module aggregation of service parameters

An aggregation can be made in many ways depending on the purpose and advantages with
different ways of combining solutions. In the distribution case, it turns out to be more
efficient to perform the size-sorting activity during the pick up transport and create the
module “collect”, which includes the size-sorting function as well as the ‘get parcels’
function.

Figure 12 Alternative module aggregation

In this aggregation, solution parameters for different functional requirements are integrated in
the same physical module, e.g. one module meets several functions.

Service Module Service Module

fetching at
customers

customer
delivery

alternative solutions

get parcels

sort parcels
according to size

requires function

bundle

zipcode and size
sorting

solution

sorting during
transport

sorting at
terminal

alternative solutions

Figure 13 Aggregation of design solutions into service modules of distribution case

get
parcels

 Unsorted, collected,
parcels at location A.

bundle Sorted, bundled
parcels at location B

Size-sorted, collected,
parcels at location A1.

collect

 bundle Sorted, bundled
parcels at location B

 8

The integration of functionally independent parameters into the same physical component is
not in conflict with the independence axiom of axiomatic design. From a modular perspective,
though, alternative modules should have the same functional properties and interfaces –
“points of hand over”.

3.6 Attributes and properties of service modules
The main function of an activity is turning an input into an output; typically the activity name
and function are equal. Functional properties of the service activity, describing its abilities,
quality, time etc. are not explicit in the IDEF0 model but are expressed in terms of the
possible in/outputs and functional properties of the resources.

Physical attributes of an activity, describing how it is performed, are not explicit in the IDEF0
model either, but expressed in terms of the physical attributes of mechanism/resources used.
The representation of resources, attributes and properties is not addressed further in this
paper.

4. Architecture of functional products
A functional product denotes a solution that contains a mixture of services and goods. The
purpose of describing a functional product is a) to be able to communicate the purpose of and
interrelations between goods and services and b) to describe how it is to be efficiently
realized. Services either use the goods as a resource for realizing a function, or transform
some aspect of the goods.

Function Realization
Process

Product
Realization
Services

Installation and
Maintenance

Services

Operation
services

Desired
function

Realized
function

Goods

Operational
Goods

Figure 14 Relations between goods and service in the process of realizing function

The architecture of a functional product describes how activities and/or objects contribute to
physically realize the desired function and properties. Design parameters represent physical
solutions in a generic manner, thus it is assumed that design parameters of the goods and of
the services can be entities in the same structure:

 9

FR1 FR2

Solution

Functional
Requirement

Service
parameter

Goods
parameter

Figure 15 Integrated structure

To exemplify this, consider the functional product “provide data processing”, i.e. a working
computer system. Such a product needs to provide a solution to the functional requirement
“repair system” which, depending on the technology used, may be realized automatically by a
self-repairing processor, or by a traditional service personnel-led repair.

identify error attend to
error

onsite repair

Repair
system X

operator led
service

processor
analysis

Figure 16 Example of structure of functional product

Thus, both the system solution, ultimately realized by software and integrated circuits, and the
service, ultimately realized by human actions, can be parts of the same functional structure of
activity solutions. Thus the realization of function by goods or service can be traced, the same
rules of design be followed and goods and service solutions be managed in integration.

5. Summary – contribution
This paper describes an initial effort, in a new field of research, of representing service and
functional products.

A modular service architecture is outlined, representing services in terms of combinable
activity modules with specified function and interfaces. It is argued that modular service
architectures will provide the same advantages concerning flexible development as modular
product architectures, e.g. modules can be developed independently as long as the interfaces
are kept intact. Further, such a subdivision makes the management of services more efficient
by enabling e.g. the tracing of cost and the configuration of customer specific services.

A structure is suggested for functional products, which in an integrated way represents the
decomposition of a functional product into goods and services. Since the structure is based on
the axiomatic theory of design, it provides support for creating flexible architectures with a
minimum of built-in functional coupling. Further, by stressing that functional requirements
are independent of specific solutions, a premature locking into particular solutions is avoided,
opening up the possibility of creating a flexible mixture of goods and services.

 10

References

[1] Sivard G., ” Modularisering av tjänster för effektiv kundanpassning”, Study report, Royal
Institute of Technology, Stockholm 2003

[2] Ölundh G. “Environmental and developmental perspectives of functional sales”,
Licentiate Thesis, Royal Institute of Technology, Stockholm 2003

[3] F.-L. Krause et al. ”Product Modeling”, Keynote paper, Annals of the CIRP Vol. 42/2
1993

[4] Nam P. Suh; ”The Principles of Design”; Oxford University Press, 1990.

[5] M.M. Andreasen, ”Reduction of the complexity of product modeling by
modularization”, Conference on Produktmodeller, Linköping, Sweden 1998

[6] G. Erixon, ‘Modular Function Deployment - A method for product modularization’,
Doctoral Thesis ISSN 1104-2141 Royal institute of Technology 1998.

[7] Sivard G., ”A Generic Information Platform for Product Families”, Doctoral Thesis,
Royal Institute of Technology, Stockholm 2001

[8] NIST standard for function modelling, http://www.idef.com/idef0.html

[9] D. Ross, ”Structured Analysis (SA): A Language for Communicating Ideas”, IEEE
Transactions on Software Engineering, vol. SE-3,
no1, 1977

[10] Merriam-Webster OnLine: WWWebster Dictionary. 2003. Http://www.m-
w.com/dictionary.htm

