Automated Condition Detection in Requirements Engineering

DS 122: Proceedings of the Design Society: 24th International Conference on Engineering Design (ICED23)

Year: 2023
Editor: Kevin Otto, Boris Eisenbart, Claudia Eckert, Benoit Eynard, Dieter Krause, Josef Oehmen, Nad
Author: Gärtner, Alexander Elenga (1,2); Göhlich, Dietmar (1); Fay, Tu-Anh (1)
Series: ICED
Institution: 1: TU-Berlin;2: IAV GmbH
Section: Design Methods
Page(s): 0707-0716
DOI number: https://doi.org/10.1017/pds.2023.71
ISBN: -
ISSN: -

Abstract

In product development, it is of great importance that a complete, unambiguous, and, as far as possible, contradiction-free target system is defined. Requirements documents of complex systems can contain several thousand individual requirements, derived in an interdisciplinary manner and written in natural language by many different stakeholders. Hence, errors, in the form of contradictions, cannot be completely avoided in these documents and today they must be corrected manually with high effort.

This paper presents an important building block for automated contradiction detection and quality analysis of requirements documents. We discuss the necessary identification of conditions in requirements and the extraction of the verbal expressions associated with condition and effect, respectively. We applied and analyzed natural language processing methods based on grammatical versus machine learning models. The models have been applied to 1,861 real-world requirements. Both approaches generate promising results, with an accuracy partly over 98%. However, in structured specification texts, a grammatical model is preferable due to lower effort in preprocessing and better usability.

Keywords: Requirements, Machine learning, Semantic data processing, Systems Engineering (SE), Evaluation

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.