Computer-Aided Design of Fault-Tolerant Hardware Architectures for Autonomous Driving Systems

DS 122: Proceedings of the Design Society: 24th International Conference on Engineering Design (ICED23)

Year: 2023
Editor: Kevin Otto, Boris Eisenbart, Claudia Eckert, Benoit Eynard, Dieter Krause, Josef Oehmen, Nad
Author: Julitz, Tim Maurice; Tordeux, Antoine; Löwer, Manuel
Series: ICED
Institution: University of Wuppertal
Section: Design Methods
Page(s): 1047-1056
DOI number: https://doi.org/10.1017/pds.2023.105
ISBN: -
ISSN: -

Abstract

Fault-tolerant hardware architectures for autonomous vehicles can be implemented through redundancy, diversity, separation, self-diagnosis, and reconfiguration. These approaches can be coupled with majority redundancy through M-out-of-N independent system architectures. The development of fault-tolerant systems is of central importance in the launch of autonomous driving systems from level 4. The increasing complexity of electrical and electronic systems is challenging for the design of safety-critical systems. This work aims to develop a method to manage this complexity in product development and to use it to compare different types of architectures. The basis is a system consisting of sensors and microcontrollers. The reliability of all possible MooN configurations of the system is calculated automatically by numerically solving the master equation of the corresponding Markov chain. Subsequently, a software-based fault tree analysis enables more detailed modeling of the component structure. The results show that four-line architectures can provide suitable results and that the development effort for 2-ECU systems is higher than for 1-ECU systems with respect to the ISO 26262 target values.

Keywords: Autonomous driving, Fail-operational, Product architecture, Computational design methods, Numerical methods

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.